金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高考数学解析几何复习指导

来源:学大教育     时间:2014-03-09 16:19:24


在我们大家的高中数学的学习过程中,解析几何的学习,无疑让很多同学感到头痛不已。想要做好自己的数学学习,提高自己的数学学习成绩,做好此类题目势在必行。下面为大家进行一些高考数学解析几何复习指导,希望能够帮助到大家的数学学习。

复习导引:这部分是直线与圆,圆与圆的位置关系,注意运用初中平面几何知识。

(一)直线与圆

1. 设有一组圆Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*)。下列四个命题:

A. 存在一条定直线与所有的圆均相切

B. 存在一条定直线与所有的圆均相交

C. 存在一条定直线与所有的圆均不相交

D. 所有的圆均不经过原点

其中真命题的代号是______(写出所有真命题的代号)。

分析Ck的圆心 x0=k-1,y0=3k,k∈N*

半径 r=-k2

y0=3(x0+1)为一条直线,∴Ck的圆心,k∈N*

在一条直线上,B正确。

考虑两圆的位置关系,圆心距d2=[k-(k-1)]2+[3(k+1)-3k]2=10,d=-

rk+1-rk=-(k+1)2--k2=-(2k+1)3->d

∴Ck含于Ck+1之中,排除A

若k↑,r=-k2↑,圆是一个无限大的区域,排除C

把x=0,y=0代入Ck:(k-1)2+9gk2=2k4

若k-1为奇数,k为偶数,上式左边是奇数,右边是偶数;若k-1为偶数时,有同样的结论,∴O(0,0)不满足Ck的方程,D正确。其真命题为B、D。

2. 已知正三角形OAB的三个顶点都在抛物线y2=2x上,其中O为坐标原点,设圆C是OAB的外接圆(点C为圆心)

(Ⅰ)求圆C的方程;

(Ⅱ)设圆M的方程为(x-4-7cosθ)2+(y-7sinθ)2=1,过圆M上任意一点P分别作圆C的两条切线PE,PF,切点为E,F,求-g-的最小值和最小值。

解:(1)∵△OAB等边,OA=OB,

又y2=2x的图像关于x轴对称,A与B是关于x轴对称点,∴AB⊥x轴。

设A(-,y),y>0

-=tan30°=-,y=2-,|AB|=4-

△OAB的重心是△OAB的外心,

|OD|=4-g-=6

C(4,0),r=4

∴C (x-4)2+y2=16

分析(2)M(x-4-7cosθ)2+(y-7sinθ)2=1

M的圆心(x0,y0)

x0=4+7cosθ,y0=7sinθ

(x0-4)2+y02=72

M的圆心轨迹是以(4,0)为圆心,以7为半径的圆。

示意图,如下图,|CP|=?

cosθ=-=-

cos2θ=2cos2θ-1=--

-g-=--

若|CP|=8,cosθ=-,cos2θ=--

此时,-g-=-8

∴-8-g---

对于我们高中数学的学习,希望同学们能够在我们的数学学习中,重视解析几何的学习,掌握好的解题方法。希望以上所介绍的高考数学解析几何复习指导,能够帮助我们大家做好数学解析几何的学习工作,提高自己的数学解题能力。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956